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ABSTRACT

Creating and processing stereoscopic video imposes additional quality requirements related to view synchroniza-
tion. In this work we propose a set of algorithms for detecting typical stereoscopic-video problems, which appear
owing to imprecise setup of capture equipment or incorrect postprocessing. We developed a methodology for
analyzing the quality of S3D motion pictures and for revealing their most problematic scenes. We then processed
10 modern stereo films, including Avatar, Resident Evil: Afterlife and Hugo, and analyzed changes in S3D-film
quality over the years. This work presents real examples of common artifacts (color and sharpness mismatch,
vertical disparity and excessive horizontal disparity) in the motion pictures we processed, as well as possible so-
lutions for each problem. Our results enable improved quality assessment during the filming and postproduction
stages.

Keywords: stereoscopic video, quality assessment, stereo matching, color mismatch, sharpness mismatch, ver-
tical disparity

1. INTRODUCTION

In this work we address the problem of stereoscopic-video quality control during filming and postproduction.
Numerous factors can cause visual discomfort when viewing stereoscopic films. Basically, users experience dis-
comfort when they see unusual effects in the stereoscopic picture that are impossible under natural viewing
conditions. These types of unwanted artifacts have been studied and are considered to be problematic.

Some S3D-content issues and possible artifacts are described in [1]. The authors discuss the issues that
arise throughout the production pipeline from the video creator to the viewer: during content creation, format
conversion, encoding and decoding, and rendering for a specific display device. More-detailed classification of
issues appearing in S3D video is presented in [2] with attention paid specifically to mobile 3DTV.

Since S3D content can be created in different ways—including filming with a stereo camera, conversion from
2D using depth maps and computer-graphics rendering—certain artifacts are typical for certain methods of
stereoscopic-video creation. The common problem, which is applicable to all the methods, is depth-budget con-
trol. The necessity of depth-budget control relates to vergence-accommodation conflict. Avoiding frequent use
of excessive disparity, which causes visual fatigue, is preferred. Frequent transitions from scenes with signifi-
cant negative disparity to scenes with significant positive disparity, and vice versa, may also cause discomfort.
Furthermore, objects with large positive disparity may fail to converge, especially on a movie screen, when the
object disparity exceeds the convergence limits.

Another problem that is common to all the methods of S3D-content creation is stereo-window violation [3].
This artifact appears when an object with significant negative disparity is situated on the left or right boundary
of the frame so that a large part of the object is visible only to one eye. This effect can annoy viewers. Possible
solutions include changing the vergence point to eliminate negative disparity for the object and application of
the floating window technique during postproduction; in this last case, the borders of each view are adjusted
independently to hide the artifact.

Authors e-mail: {avoronov, dmitriy, dsumin, vnapadovsky, aborisov}@graphics.cs.msu.ru

A. Voronov, D. Vatolin, D. Sumin, V. Napadovsky, and A. Borisov,  “Methodology for stereoscopic motion-picture quality assessment,” 
Stereoscopic Displays and Applications, vol. 8648, pp. 864810–1–864810–14, 2013. doi:10.1117/12.2008485

VQMT3D Project

http://dx.doi.org/10.1117/12.2008485
http://compression.ru/video/vqmt3d/


In this paper we mostly address the problem of quality control for video captured using a stereo camera.
Typical problems specific to this type of content are the following:

• geometry distortion,

• color mismatch,

• focus mismatch,

• time desynchronization,

• excessive or insufficient disparity,

• stereo-window violation.

These problems are caused by inaccurate camera setup or synchronization. Most of them can be fixed during
the postproduction stage. Geometry distortion is a result of camera misalignment. Correction of small geometry
distortions is possible through affine transforms of the views; the parameters of the transform can be estimated
using image rectification [4, 5]. There are a variety of reasons which may cause color mismatch between views.
For instance, adjustments to the cameras’ brightness and color settings must be synchronized. This type of
artifact is the easiest one to fix as long as differences in the camera settings don’t yield over- or underexposure
in one view. Relevant algorithms are presented in [6] and [7]. More-complex color-mismatch problems can be
caused by inaccurate selection of light and polarizing filters. Problems with different polarization may arise
when using mirror stereo rigs. Differences in color caused by filters and mirror rigs are usually nonuniform, so
locally adaptive color-correction approach is required to fix this problem. Suitable algorithm is described in [8].
In [9], the authors provide physical background on the focus-mismatch problem and propose a metric based on
sharpness computation for each pixel in a view, using the estimated disparity map.

Some solutions enable on-the-fly S3D-video quality evaluation during filming [10, 11]. These assistance
systems provide depth-budget control and warnings about geometry distortions and stereo-window violation.
Such systems restrict an algorithm’s computational complexity because they require real-time processing. These
types of solutions still don’t eliminate the need for quality control of postproduction-stage results.

In this paper, we propose a system for offline quality analysis that is intended for evaluation of an entire
video: it provides an average quality score for the video and identified scenes with the most noticeable artifacts.
Also, the proposed system can evaluate the quality of individual shots—a feature that can be beneficial during
filming and postproduction.

In Section 2, we describe our methodology for analyzing disparity distribution in a film and for identifying
scenes with the most noticeable distortions. In Section 3 we present results from application of this methodology
to modern S3D films. Section 4 offers ideas on how the methodology can be extended and improved. Finally, we
conclude with a short summary of our work in Section 5.

2. PROPOSED METHOD

Here we describe our methodology for S3D-video quality assessment. First, stereoscopic video is provided as
input; the output is a set of metric values for each frame in the video. The metric value is a number that
quantifies the noticeability of distortion in the frame: the greater the value, the more noticeable the detected
distortion. We implemented the following metrics: color mismatch, sharpness mismatch and vertical disparity. To
analyze horizontal disparity we use a disparity distribution histogram and values for the maximum positive and
negative horizontal disparities. These values enable detection of scenes with excessive disparity. The distribution
histogram for each frame is useful for more-complex analysis.

A list of scenes containing the most noticeable distortions is returned for each metric. Finally a quality
comparison of different videos can be undertaken using the average metric values.
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2.1 Horizontal-disparity distribution analysis

Input for the horizontal-disparity distribution metric is a stereo image or single stereo-video frame. The output
consists of a horizontal-disparity distribution histogram and the maximum negative and positive horizontal-
disparity values for the image.

The metric-calculation algorithm involves three steps:

1. Color-independent stereo matching

2. Determining and masking unreliable areas in the image

3. Calculating the horizontal-disparity histogram for the unmasked areas and estimating extreme horizontal-
disparity values

The calculated metric values help determine which scenes can most benefit from changing the depth budget.
Although precisely setting the horizontal parallax before shooting a scene is important, available algorithms
enable parallax (and thus disparity) correction. The problem of parallax correction is close to that of view
reconstruction. This approach essentially inherits difficult subtasks like the background-restoration problem;
therefore, significantly changing the parallax while preserving stereo-picture quality is complicated.

Frame number

O
ff

-s
cr

ee
n

In
-s

cr
ee

n

Screen level

Maximum negative disparity value

Maximum positive disparity value

Number of pixels at the current depth (disparity) level

min max

Extreme disparity

Average disparity

H
o

ri
zo

n
ta

l d
is

p
ar

it
y 

(%
 o

f 
sc

re
en

 w
id

th
)

Figure 1: Horizontal-disparity distribution diagram for “MSU Views” video sequence. This diagram helps in
identifying scenes with excessive horizontal disparity and enables comparison of depth budgets in different video
sequences.

2.1.1 Color-independent stereo matching

Initially we chose the block-based approach described in [12] as a stereo matching algorithm. This approach
provides a dense disparity map, what is an advantage over the feature-based approach. The main advantage over
per-pixel stereo matching is lower computational complexity. The disparity quality obtained using block-based
matching is suitable for our estimation purposes.

To improve the reliability of the matching results for color-mismatched video, we modified the block-matching
metric to make it more robust when dealing with local brightness mismatch. Details of this modification are
described in [13].
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Figure 2: Color-mismatch metric diagram for “MSU Views” video sequence. This diagram helps to identify the
scenes with the most noticeable distortion.

2.1.2 Determining unreliable areas and calculating the metric

Owing to possible errors in the block-matching algorithm while processing uniform areas, we exclude these areas
from consideration. For each block we estimate the variance of the Y-component in the YUV color space; blocks
with a variance less than a given threshold are marked as unreliable. Only reliable blocks are taken into account
when estimating disparity distribution histogram.

On the basis of the horizontal-disparity distribution histogram, we estimate the extreme values for the hori-
zontal disparity. To make the estimation process more robust, we exclude 5% of the values from the boundaries
of the histogram. The remaining values are considered to be the maximum positive and negative horizontal
disparity.

We measure horizontal disparity as a percentage of screen width. This choice of units is related to the fact that
we processed only Blu-ray 3D content, which is oriented to home-theater devices. Most home-theater displays
have an aspect ratio (AR) of 16:9; the AR of Blu-ray content is usually the same or higher (we are unaware of
any Blu-ray release with an AR less than 16:9). As a result we decided to use screen width as the denominator
for this metric value. This approach may be unsuitable for movie-theater screens; the best approach may be
recalculation of the metric values in terms of parallax if the screen dimensions and viewer position are known.

This metric for extreme horizontal disparity is helpful when analyzing the disparity distribution over the
video. The main drawback of such and approach is that the proposed metric doesn’t reflect the size of the object
with extreme disparity. This fact motivated our use of distribution histograms in conjunction with extreme-values
diagram. Figure 1 shows an example diagram.

2.2 Color-mismatch detection

This metric enables detection of scenes with noticeable color differences between views. The main idea is to
perform stereo matching of the views, then reconstruct one view from the other on the basis of matching data
and compare colors from the original and reconstructed views. For stereo matching we use the same algorithm
described in Subsection 2.1. Differences between the original and reconstructed images are measured as the
Mean Square Error (MSE) in the RGB color space. We exclude from consideration 5% of image pixels with the
largest differences so that incorrect stereo matching of object boundaries and occlusion areas will not affect the
results. The metric value is dimensionless.

A detailed description of the color-mismatch detection algorithm can be found in [13]. Figure 2 presents an
example per-frame diagram.

The resulting metric values can be used to correct color mismatches. Most postprocessing software packages
for stereoscopic pictures have tools for inter-view color correction. Common methods are described in the
introduction.
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(a) Left view of source frame. (b) Right view of source frame.

(c) Difference between the original right view and stereo-
matching-based left-to-right reconstruction (contrast in-
creased).

(d) Checkerwise blending of the original right view and the
left-to-right reconstruction.

Figure 3: Example of scene from Resident Evil: Afterlife detected using color-mismatch metric. Checkerwise-
blending visualization in (d) demonstrates noticeable color differences between views.

2.3 Sharpness-mismatch detection

We use the term sharpness mismatch instead of focus mismatch because the corresponding metric is designed
to detect differences in high frequencies; these differences can be caused not only by focus mismatches but also
by inaccurate postprocessing, differences in motion blur and asymmetric compression.

The idea of the metric is similar to that of color mismatch. We perform stereo matching, then reconstruct
one view from another and compare the original and reconstructed views. The primary difference relative to
color-mismatch estimation is that we compare only high-frequency information from the views. High frequencies
for each view are estimated as the absolute difference between the original image and the result of bilateral
filtering for that image. Figure 4 illustrates the entire process. The resulting value depends on the strength
of the sharpness difference and on the size of the area containing the sharpness mismatch. The metric value is
dimensionless.

A detailed description of the sharpness-mismatch detection algorithm is presented in [13].

Sharpness-mismatch problems can be avoided during the filming stage, and methods of sharpness-mismatch
correction can be applied during the postprocessing stage. In postprocessing, sharpness-mismatch problem can
be solved with blurring one view or sharpening the other. The second method is more complicated.

2.4 Vertical-disparity detection

Global vertical disparity is a measure of geometric camera-calibration accuracy. This kind of artifact appears
when the cameras in a rig have different angles relative to the horizontal plane. Usually the problem is more
complicated, and cameras may have different tilt or perspective distortion. It is unclear how to compare scenes
containing tilt, perspective distortion and vertical disparity, which is why at this stage we estimate only the
vertical disparity, which is easy to understand.

We estimate the vertical disparity using the stereo-matching data. The first two steps of the algorithm are
the same as those for horizontal-disparity estimation: we perform stereo matching and then mask unreliable
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(a) Left view of original image. (b) Right view of original image.

(c) Estimated high-frequency map of the left view. (d) Estimated high-frequency map of the right view.

(e) Penalty-map visualization demonstrating which areas
have noticeable differences in sharpness according to a com-
parison of high-frequency maps.

(f) Magnified area with the most noticeable sharpness dif-
ference.

Figure 4: Example of scene from Avatar with detected sharpness mismatch. The area with the most noticeable
difference in sharpness is marked with red rectangle in (a) and (b); a magnification of this area is presented in (f).
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Table 1: Results of the full-length-film evaluation. The largest values for each metric are marked in bold. The
positive and negative disparity values describe the strength of the “3D effect.” High metric values for vertical
disparity and for color and sharpness mismatch mean the film is not of high quality.

Film title
Pos. disparity
(% of screen

width)

Neg. disparity
(% of screen

width)

Vertical
disparity (h of
screen width)

Color
mismatch

Sharpness
mismatch

Avatar 1.13510 0.57940 0.05654 7.37639 8.71903
Dolphin Tale 0.79032 0.17189 0.59346 29.22981 11.93237
Galapagos:
The Enchanted Voyage

1.18344 1.38288 0.75352 22.31848 12.37332

Hugo 0.58173 0.98574 0.18485 3.08822 9.32534
Into the Deep 1.64675 2.09470 0.62676 27.20178 15.95367
Pirates of the Caribbean:
On Stranger Tides

0.61308 0.32259 0.12376 2.83375 5.36008

Resident Evil: Afterlife 0.62952 0.45495 0.32623 16.88972 8.67114
Sanctum 1.10979 0.80092 0.50303 8.12971 10.32646
Step Up 3D 0.85358 0.74246 0.73433 20.28920 12.85025
The Three Musketeers 0.81952 0.04928 0.19528 5.06023 5.11177

blocks. For the third step we estimate the value of the global vertical disparity as the median disparity among
the reliable blocks.

Also, note that local vertical disparity is admissible—for example, in the case of toed-in cameras. The metric
produces no “false alarms” in such a case because the median of the vertical disparity is close to zero when scenes
are filmed properly using toed-in cameras.

During the filming stage, geometric distortions must be avoided by means of precise stereoscopic camera
calibration. In the postprocessing stage, tools for correcting vertical disparity or inter-view tilt can be used.

We use per mil of screen width as the unit for this metric. The justification for our choice of screen width
as the denominator is the same as that for horizontal disparity in Subsection 2.1: for home-theater content, the
frame width is typically fixed, but the frame height may vary with the aspect ratio of the image.

3. RESULTS

To understand how often the problems described above appear in real videos, we performed quality evaluation
for a set of recent Blu-ray 3D releases. We chose Blu-ray 3D as the content with the best publicly available
quality. Since our selected releases are oriented toward home-theater displays, we assume the comparison of the
films’ depth budget is fair.

The list of evaluated films and their average metric values are presented in Table 1. Diagrams depicting the
results of the evaluation are presented in Appendix A. The results of the evaluation demonstrate that the quality
of the top films is increasing over time. Another trend is that recent films are more conservative in terms of
depth budget compared with the oldest films in our test set.

Processing speed is about five days for a three-hour film using an Intel Core i7 processor running at 2.8GHz.
Since we don’t assume any temporal dependencies between results for different frames, processing can be paral-
lelized effectively among several computers.

4. FURTHER WORK

Development of our proposed system can follow two main directions: research on new metrics and improvement
of processing speed. To complete the set of metrics for processing captured video, development of a metric for
stereo-window violation and a metric for time desynchronization must be undertaken, at a minimum.
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Another major task in metric development is creation of metrics for converted stereo. Such metrics will be
more complicated than those for captured stereo video because numerous issues arise in the 2D-to-3D conversion
process. We plan to estimate some depth-map features and their correspondence with the source views. It will
then be possible to estimate the quality of edge processing and occlusion filling. This kinds of metrics will enable
complex quality assessment of converted films.

The main opportunity to improve the algorithm’s processing speed is through porting of the most time-
consuming tasks to a GPU.

Owing to the complexity of the problem studied in this work, we performed no complicated subjective testing
nor any analysis of correlation between human perception of artifacts and our results. The results of human-
perception tests may depend on the type and quality of the display device; also, the results are susceptible to
viewers’ visual acuity and their ability to perceive 3D. This topic should therefore be addressed separately. One
of the first tasks in this case is to determine the threshold of artifact noticeability for each metric.

We plan to share the results of our work with professional stereographers and researchers to invite feedback on
the problem and recommendations on how we can improve our system. Our final goal is creation of a powerful
automatic system for S3D-content quality assessment; such a system may help improve the visual quality of
future stereo films.

5. CONCLUSION

In this paper we presented our methodology for quality evaluation of stereoscopic films. We described algorithms
for estimating horizontal-disparity distribution and for detecting artifacts in captured video. To demonstrate the
utility of the proposed methodology, we evaluated recent Blu-ray 3D releases and presented the results. Possible
directions of further work include development of new quality metrics, improvement of processing speed and
performance of subjective testing to determine the noticeability of artifacts to viewers.
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APPENDIX A. FILM COMPARISON DIAGRAMS

A.1 Average value diagrams
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Figure 5: Diagram illustrating average positive and negative horizontal disparity for the evaluated films.
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Figure 6: Diagram illustrating average vertical disparity for the evaluated films.
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Figure 7: Diagram illustrating average color-mismatch metric value for the evaluated films.
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Figure 8: Diagram illustrating average sharpness mismatch value for the evaluated films.
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A.2 Integral histograms

Integral histograms illustrate the number of good-quality and poor-quality scenes in each film. Figure 9 shows
an example integral histogram for the artifact metric. This histogram comprises three films: A, B and C. Film
A has more frames with low metric values. Since our distortion metrics yield greater values in cases of higher
distortion, film A is thus better than films B and C.

Consider point P at coordinates (x, y), for example. According to the integral histogram, point P indicates
that y percent of the frames in the film have a metric value no greater than x. This particular histogram indicates
that 40% of the frames in film A have a value no greater than 0.1.

Example Integral Histogram

Metric units (logarithmic scale)
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Figure 9: Example of an integral (cumulative) histogram.

In the case of using integral histograms for artifact analysis, the metric lines for films with better quality
are “closer” to the top-left corner of graph. When analyzing depth budget, “flatter” films are lie “closer” to
this top-left corner. To estimate depth budget for a given frame we use difference between extreme positive and
negative disparity levels in that frame.

The intersection of lines B and C is also worth mentioning. This feature means that film B has more scenes
with a low metric value, but it also has scenes with very high values. When analyzing film quality, these results
tend to indicate that artifacts in film B are more noticeable.
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Below we present an integral histogram for each metric.

Figure 10: Diagram illustrating distribution of depth budget for the evaluated films. Depth budget for each
frame is presented as difference between extreme values of positive and negative disparities.

Color-mismatch metric (logarithimic scale)

Figure 11: Diagram illustrating distribution of color-mismatch metric value for the evaluated films.
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Figure 12: Diagram illustrating distribution of vertical disparity for the evaluated films.

Focus-mismatch metric (logarithimic scale)

Figure 13: Diagram illustrating distribution of sharpness-mismatch metric value for the evaluated films.

A. Voronov, D. Vatolin, D. Sumin, V. Napadovsky, and A. Borisov,  “Methodology for stereoscopic motion-picture quality assessment,” 
Stereoscopic Displays and Applications, vol. 8648, pp. 864810–1–864810–14, 2013. doi:10.1117/12.2008485

VQMT3D Project

http://dx.doi.org/10.1117/12.2008485
http://compression.ru/video/vqmt3d/



